

# UTR2810E Series LCR Meter User Manual



www.uni-trend.com



### Preface

Thank you for purchasing this product. In order to use this product safely and correctly, please read this manual thoroughly, especially the safety notes.

After reading this manual, it is recommended to keep the manual at an easily accessible place, preferably close to the device, for future reference.

### **Copyright Information**

UNI-T products are protected by patent rights in China and other countries, including issued and pending patents. Uni-Trend reserves the rights to any product specification and pricing changes.

Uni-Trend Technology (China) Co., Ltd. all rights reserved. Trend reserves all rights. Information in this manual supersedes all previously published versions. No part of this manual may be copied, extracted or translated by any means without the prior permission of Uni-Trend.

UNI-T is the registered trademark of Uni-Trend Technology (China) Co., Ltd.

### Warranty Service

The instrument has a warranty period of one year from the date of purchase. If the instrument is damaged due to improper operation by the user during the warranty period, the maintenance fee and the costs caused by the maintenance shall be borne by the user, and the instrument shall be maintained by the company for life.

If the original purchaser sells or transfers the product to a third party within one year from the date of purchase of the product, the warranty period of one year shall be from the date of the original purchase from UNI-T or an authorized UNI-T distributor. Power cords, accessories and fuses, etc. are not included in this warranty.

If the product is proved to be defective within the warranty period, UNI-T reserves the rights to either repair the defective product without charging of parts and labor, or exchange the defected product to a working equivalent product (determined by UNI-T). Replacement parts, modules and products may be brand new, or perform at the same specifications as brand new products. All original parts, modules, or products which were defective become the property of UNI-T.

The "customer" refers to the individual or entity that is declared in the guarantee. In order to obtain the warranty service, "customer" must inform the defects within the applicable warranty period to UNI-T, and perform appropriate arrangements for the warranty service.

The customer shall be responsible for packing and shipping the defective products to the individual or entity that is declared in the guarantee. In order obtain the warranty service, customer must inform the defects within the applicable warranty period to UNI-T, and perform appropriate arrangements for the warranty service. The customer shall be responsible for packing and shipping the defective products to the designated maintenance center of UNI-T, pay the shipping cost, and provide a copy of the purchase receipt of the original purchaser. If the products is shipped domestically to the purchase receipt of the original purchaser. If the location of the UNI-T service center, UNI-T shall pay the return shipping fee. If the product is sent to any other location, the customer shall be responsible for all shipping, duties, taxes, and any other expenses.

### **Guarantee Limit**

This warranty shall not apply to any defects, malfunction or damages caused by accidental, machine parts' wear and tear, using outside the product's specifications, improper use, and improper or lacking of maintenance. UNI-T under the provisions of this warranty has no obligation to provide the following services:

a. Any repair damage caused by the installation, repair, or maintenance of the product by non UNI-T service representatives; b. Any damage caused by improper use or connection to an incompatible device;

c. Any damage or malfunction caused by the use of a power source not provided by UNI-T;

d. Any maintenance on altered or integrated products (if such alteration or integration leads to an increase in time or difficulty of product maintenance).

This warranty is written by UNI-T for this product and it is used to substitute any other express or implied warranties. UNI-T and its distributors do not offer any implied warranties for merchantability or applicability purposes. For violation of this guarantee, UNI-T is responsible for the repair or replacement of defective products as the only and complete remedy available to customers. Regardless of whether UNI-T and its distributors are informed that any indirect, special, incidental, or consequential damage may occur, the UNI-T and its distributors shall not be responsible for any of these damages.

## **Safety Instructions**

## AWarning A Danger: To avoid possible electric shock and personal safety problem, please follow the

instructions below.

| Disclaimer                                                                      | Please read the following safety information carefully beforestarting to use the instrument.<br>Uni-Trend will not be responsible for the personal safety and property damage caused by<br>the user's failure to comply with the following terms.                                                                                                                      |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrument Grounding                                                            | To prevent the risk of electric shock, please connect the power ground wire.                                                                                                                                                                                                                                                                                           |
| Operating Voltage                                                               | Ensure that the operating voltage of the electric supply does not exceed 10% of the rated range, to avoid dangerous damage to the instrument.                                                                                                                                                                                                                          |
| Instrument Connecting line                                                      | Select the proper electirc wire to connect the load and the power under test,<br>make sure the the capacity of the wires can withstand the maximum short-<br>circuit current without overheating.                                                                                                                                                                      |
| Input Voltage                                                                   | Before connecting the device, observe all marks on the instrument. The instrument supports AC110V and 220V input. Before turning on the power supply, check whether the conversion switch of the programmable voltage tester matches the input power supply and ensure that the fuse is installed properly. Otherwise, the programmable voltage tester may be damaged. |
| <b>DO NOT</b><br>use the instrument in an<br>explosive atmosphere               | Do not use the instrument in flammable and explosive gas, steam or dusty<br>environment.<br>The use of any electronic equipment in such an environment is a risk to<br>personal safety.                                                                                                                                                                                |
| <b>DO NOT</b><br>open the outer shell of the<br>instruement                     | Non-professional maintenance personnel should not open the outer shell of<br>the instrument to try to repair the instrument. The undischarged charge still<br>exists for a period of time after the instrument is turned off, which may cause<br>electric shock.                                                                                                       |
| <b>DO NOT</b><br>use instruments that work<br>abnormally                        | If the instrument does not work properly and its danger is unpredictable, please disconnect the power cord, do not use it, and do not try to repair it yourself.                                                                                                                                                                                                       |
| DO NOT<br>use the instrument beyond the<br>way specified in this user<br>manual | If it exceeds the range, the protective measures provided by the instrument<br>will become invalid.<br>It's strictly prohibited that connect the instrument to life support system or any<br>other equipment with safety requirements.                                                                                                                                 |
| <b>DO NOT</b><br>install substitutes or perform<br>unauthorized changes         | To ensure the safety of programmable pressure tester, please do not install substitute parts or perform any unauthorized modifications.<br>To avoid risks, do not use the instrument when the cover is removed or loose.                                                                                                                                               |





#### Safety Symbol

|        | Direct current                      | Ν  | Null line or central line   |
|--------|-------------------------------------|----|-----------------------------|
| $\sim$ | Alternating current                 | L  | Live line                   |
| R      | Both direct and alternating current |    | Power on                    |
| 3~     | Three phase alternatin              | 0  | Power off                   |
| ╧      | Grounding                           | Φ  | Backup power                |
|        | Protective grounding                | Н. | Ground terminal for chassis |
| Ţ      | Signal grounding                    | Â  | Warning                     |
| Â      | Danger                              |    |                             |

#### **Environment-Friendly Use Period (EFUP)**



This product contains certain hazardous substances and can be used safely during its environmental-friendly use period (EFUP) of 40 years, as shown in the symbol on the left. If the specified time is exceeded, the product should be recovered.

#### Waste Electrical and Electronic Equipment (WEEE) Instruction 2002/96/EC



Do not dispose the product and its accessories in trash bin.

If the following abnormal conditions occurs, please terminate the operation and disconnect the power cable immediately. Contact the sales department of UNI-T for repair immediately. Failure to do so will result in fire or potential electrocution hazard to operators.

- The instrument is abnormal operation.
- Abnormal noise, smell, smoke or flash occurs during operating the instrument.
- During operation, the instrument generates high temperature or electric shock.
- Power line, switch or socket is damaged.
- An impurity or liquid flows into the instrument



### **Table of Contents**

|    | Preface                                  | 2  |
|----|------------------------------------------|----|
|    | Copyright Information                    | 2  |
|    | Warranty Service                         | 2  |
|    | Guarantee Limit                          | 2  |
|    | Safety Instructions                      | 3  |
|    | Table of Contents                        | 5  |
| 1. | Before Use                               | 7  |
|    | 1.1 Out of Box Audit                     | 7  |
|    | 1.2 Requirements of Power Supply         | 7  |
|    | 1.3 Choice of Power and Fuse             | 7  |
|    | 1.4 Operating Environment                | 8  |
|    | 1.5 Kelvin Clips or Test Fixtures        | 8  |
|    | 1.6 Preheat and Continous Operating Hour | 8  |
|    | 1.7 Other Characteristics                | 8  |
| 2. | Introduction of Panel                    | 9  |
|    | 2.1 Front Panel                          | 9  |
|    | 2.2 Rear Panel                           | 9  |
|    | 2.3 Display Area                         |    |
| 3. | Operating Instruction                    | 13 |
|    | 3.1 Boot up                              | 13 |
|    | 3.2 Measurement Parameter Setting        | 13 |
|    | 3.2.1 Parameter A/B                      | 13 |
|    | 3.2.2 Frequency                          | 14 |
|    | 3.2.3 Electrical Level                   | 14 |
|    | 3.2.4 Speed                              | 14 |
|    | 3.2.5 Range                              | 15 |
|    | 3.2.6 Internal Resistance                | 15 |
|    | 3.2.7 Mode                               | 15 |
|    | 3.2.8 Clear                              | 16 |
|    | 3.2.9 Trigger Setup                      | 18 |
|    | 3.3 System Setup                         | 18 |
|    | 3.3.1 Communication Mode                 | 18 |
|    | 3.3.2 Baud Rate                          | 18 |
|    | 3.3.3 Qualified Beeper                   | 19 |
|    | 3.3.4 Unqualified Beeper                 | 19 |
|    | 3.3.5 Key Sound                          | 19 |
|    | 3.3.6 LANGUAGE                           | 19 |
|    | 3.3.7 Default Setting                    | 19 |
|    | 3.3.8 Auto LCR                           | 19 |
|    | 3.3.9 Save Setting                       | 19 |
|    | 3.3.10 View System Information           | 20 |
|    | 3.4 Sorting Setup                        | 20 |
|    | 3.4.1 Parameter A/B Setup                | 20 |
|    |                                          |    |

### UNI-T.

| 3.4.2 Nominal Value Setup                                                   | 20 |
|-----------------------------------------------------------------------------|----|
| 3.4.3 Comparison Function                                                   | 20 |
| 3.4.4 Comparison Mode                                                       | 21 |
| 3.4.5【Upper Limit】,【Lower Limit】Parameter Setting                           | 21 |
| 4. Instruction of Handler Interface                                         | 22 |
| 4.1 Brief Introduction                                                      | 22 |
| 4.2 Operating Instruction                                                   | 22 |
| 4.2.1 Definition of signal line                                             | 22 |
| 4.2.2 Connection terminal and Signal                                        | 23 |
| 4.2.3 Electrical Characteristic                                             | 24 |
| 5. RS232 Serial Interface                                                   | 26 |
| 5.1 Introduction of RS-232C Interface                                       | 26 |
| 5.2 UTR2810E Serial Interface                                               | 26 |
| 5.3 Connect to Computer                                                     | 27 |
| 5.4 Serial Port Parameter                                                   | 27 |
| 5.5 Key Points of Programming                                               | 27 |
| 5.6 End Character                                                           | 28 |
| 5.7 SCPI Language                                                           | 28 |
| 6. General Characteristic Index                                             | 29 |
| 6.1 Measurment Parameter                                                    | 29 |
| 6.2 Equivalent Mode                                                         | 29 |
| 6.3 Range                                                                   |    |
| 6.4 Trigger Mode                                                            | 30 |
| 6.5 Test Terminal Mode                                                      | 31 |
| 6.6 Test Speed                                                              | 31 |
| 6.7 Basic Accuracy                                                          | 31 |
| 6.7.1 Maximum and Minimum Value of Measurement Parameter Affecting Accuracy | 32 |
| 6.7.2 Affecting Speed Error Factor ks                                       | 32 |
| 6.7.3 Test Level Error Factor kv                                            | 32 |
| 6.7.4 Test Frequency Error Factor kf                                        | 32 |
| 6.7.5 Test Temperature Error Factor ke                                      | 32 |
| 6.8 Test Signal Frequency                                                   |    |
| 6.9 Test Signal Level                                                       | 32 |
| 6.10 Output Impedance                                                       | 33 |
| 6.11 Test Display Range                                                     | 33 |
| 6.12 Clear Function                                                         |    |
| 6.13 Comparison Function                                                    | 33 |
| 6.14 Beeper                                                                 | 33 |
| 6.15 Range Hold                                                             | 33 |
| 6.16 RS232 Interface                                                        | 34 |
| 6.17 HANDLER Interface                                                      | 34 |

### UNI-T<sub>o</sub>

## 1. Before Use

Thank you for purchasing UNI-T product! Please read this chapter carefully before use. In this chapter you will learn the following:

- Out of box audit
- Requirements of power supply
- Choice of power supplu and fuse
- Operating environment
- Peform test clips
- Preheat and continuous operating hours
- Other characteristics

### 1.1 Out of Box Audit

Check with packing list to confirm that accessories has no loss. If there have any problem, please contact with our company.

| No. | Components               | Quantity | Remarks            |
|-----|--------------------------|----------|--------------------|
| 1   | LCR Meter                | 1        | UTR2810E/UTR2811E  |
| 2   | Power line               | 1        |                    |
| 3   | kelvin clips wire        | 1        |                    |
| 4   | RS-232 communication lie | 1        | Only for LITP2810E |
| 5   | Test fixtures            | 1        |                    |
| 6   | Short-circuit plate      | 1        |                    |

### **1.2 Requirements of Power Supply**

- (1) voltage range:  $198V \sim 242V$  or  $99V \sim 121V$
- (2) frequency range: 47.5 Hz ~ 63 Hz
- (3) power range: ≤20VA
- (4) Power input phase wire L, zero line N, ground line E should be corresponding to the power plug of the instrument.
- (5) The instrument has designed to reduce waveform jamming caused by AC power input. However, it should still be used in a low-noise environment as far as possible. If this cannot be avoided, please install a power filter.



WARNING: To prevent electric shock, please connect the ground wire of the power supply. If the power cable is replaced, ensure that the ground of the power cable is properly connected.

### 1.3 Choice of Power and Fuse

Before connect the power supply, please confirm that the power switch is tured on and select the right input supply voltage. The setting see Figure 1-1.



Figure1-1 The setting of input power

0.5A fast fuse is equip with the instrument, the user should use the fuse provided by our company or choose the fuse of the same specification.

### **1.4 Operating Environment**

- (1) Do not use the instrument in dust, shaking, direct sunlight and etchant gas environment.
- (2) Please use the instrument in operating temperature 0°C ~ 40°C, relative humidity ≤75%, to ensure the accuracy of measurement
- (3) The instrument has designed to reduce waveform jamming caused by AC power input. However, it should still be used in a low-noise environment as far as possible. If this cannot be avoided, please install a power filter.
- (4) If the instrument is not used for long time, please store it in an original packing box or a similar box in ventilated room with temperature of 5°C ~ 40°C and relative humidity less than 85%RH. The air should not contain harmful corrosion and avoid direct sunlight.
- (5) When the instrument connecting with the test object throught the testing wire, it should keep away from the strong electromagnetic field to avoid interference to the measurement.

### **1.5 Kelvin Clips or Test Fixtures**

Please use the equipment test fixtures or test clips, the test fixtures or test clips made by user or other companies may casuse incorrect measurement results. The test fixtures, test clips and the pins of the device under test should be kept clean to ensure that the connecting in good condition.

Connect the test fixture or test clip to the four test ends of Hcur, Hpot, Lcur and Lpot on the front panel of the instrument. For the object under test with a shielding shell, the shielding layer can be connected to the instrument "<sup>⊥</sup>".

### **1.6 Preheat and Continous Operating Hour**

In order to guarantee the accuracy of measurement, the preheating time should not less than 15 minute; Operating hour should be less than 16 hours.

### **1.7 Other Characteristics**

- (1) Poewer Consumption: ≤20VA
- (2) Dimension (W\*H\*D) : 88\*174\*275mm;
- (3) Weight: about 2.5kg;

### UNI-T<sub>o</sub>

## 2. Introduction of Panel

In this chapter you will learn the following:

- Front Panel
  - Rear Panel
  - Display Area

### 2.1 Front Panel

The front panel of UTR2810E, see the Figure 2-1.





Table 2-1 Function description of front panel

### 2.2 Back Panel

The back panel of UTR2810E, see the Figure 2-2

| No. | Function             | Description                                                                                          |
|-----|----------------------|------------------------------------------------------------------------------------------------------|
| 1   | Brand and model name | Brand and model name of the instrument                                                               |
| 2   | LCD                  | Display the information of test result and condition                                                 |
| 3   | Rotary knob          | Select and confirm                                                                                   |
| 4   | POWER switch         | When the switch is on "1", the power is enabled;<br>When the switch is on "0", the power is disabled |



| C Tast load |             |                | Hcur: current excitation high-end              |
|-------------|-------------|----------------|------------------------------------------------|
|             |             |                | Hpot: voltage pressure high-end                |
| 5           | 5 lest lead |                | Lpot: voltage pressure low-end                 |
|             |             |                | Lcur: current excitation low-end               |
|             |             | <b>⇔ 1 ⇒ ↓</b> | Direction key                                  |
|             |             | ESC            | Escape                                         |
|             |             | Enter          | Confirmed                                      |
|             |             | CLEAR          | Rest key ( This version does not support REC ) |
| 6           | Button      |                | The first function is UTIL                     |
|             |             | OTIL           | The second function is TOL                     |
|             |             | PARAA          | Parameter selection A                          |
|             |             | PARA B         | Parameter selection B                          |
|             |             | TRIGGER        | Single measurement trigger key                 |
| 1           |             | SHIFT          | Option key of the second function              |



Figure 2-2 Back Panel

| No. | Function                | Description                                                                                                                                                                                                              |  |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | Handler interface       | Through Handler interface to make up test system and achieve<br>automatic test. The instrument outputs the sub-file comparison<br>results, communication signal and obtains the "start" signal<br>through the interface. |  |
| 2   | RS232C serial interface | Serial communication interface                                                                                                                                                                                           |  |
| 3   | AC option switch        | For switch 110/220V ( Note the position of the AC switch when connecting the power supply )                                                                                                                              |  |
| 4   | Power spcket            | For input AC power (with fuse )                                                                                                                                                                                          |  |
| 5   | Ground lead             | The grounding lead is connected with the instrument chassis. It<br>can be used to protect or shield the ground connection.                                                                                               |  |

Table 2-2 Function description of panel

### 2.3 Display Area

The UTR2810E display area is divided into the following parts, see Figure 2-3

|                       | Int (   | Local $Q$ |
|-----------------------|---------|-----------|
| <meas disp=""></meas> | PARA A  | С         |
|                       | PARA B  | D         |
| C = 0 + 10.471 = E    | FREQ    | 1kHz      |
| CS 0. 1347 IpF        | LEVEL   | 1.0V      |
|                       | SPEED   | MED       |
| D 0. 52635            | RANGE   | AUTO      |
|                       | RESIST  | 100       |
|                       | MODE    | SER       |
|                       | CLEAR   | OFF       |
|                       | TRIGGER | INT       |
|                       |         |           |
|                       |         |           |



#### 2.3.1 MEAS DISP

Dispaly Primary parameter Z/R/L/C/G /Y Secondary paramter X/Q/D /R/O (deg) /O (rad) /B

#### 2.3.2 SET DISP

- (1) Paramter A
  - Z: Impedance value measurement
  - R: Resistance value measurement
  - L: Inductance value measurement
  - C: Capacitance value measurement
  - G: Conductance value measurement
  - Y: Admittance measurement

#### (2) Paramter B

- X: Reactance measurement
- Q: Quailty factor measurement
- D: Loss value measurement
- R: Resistance value measurement
- $\Theta$  (rad) : Phase angle (arc)
- Θ (deg) : Phase angle
- B: Susceptance value measurement
- (3) Frequency
  - 100 Hz: The current measured signal frequency is 100 Hz.
  - 120 Hz: The current measured signal frequency is 120 Hz.
  - 1 kHz: The current measured signal frequency is 1 kHz.
  - 10 kHz: The current measured signal frequency is 10 kHz.



- (4) Electrical level
  - 0.1 V: The current measured signal voltage is 0.1 V.
  - 0.3 V: The current measured signal voltage is 0.3 V.
  - 1.0 V: The current measured signal voltage is 1.0 V.

#### (5) Speed

- FAST: Fast speed test
- MED: Medium speed test
- SLOW: Slow speed test

#### (6) Range

- AUTO: Automatic range
- HOLD: 3/10/30/100/300/1k/3k/10k/30k/100k/300k

#### (7) Internal Resistance

- $30\Omega$ : signal source resistance is  $30\Omega$ .
- 100 $\Omega$ : signal source resistance is 100 $\Omega$ .

#### (8) Mode

- SER: Series equivalent circuit
- PAR: Parallel equivalent circuit
- (9) Clear

ON: turn on OFF: turn off

#### (10) Trigger Mode

- INT: internal trigger
- MAN: manual trigger
- EXT: external trigger
- BUS: bus trigger

### UNI-T<sub>o</sub>

## **3. Operating Instruction**

In this chapter you will learn the following:

- Boot up
- First function operating
- Second function operating

### 3.1 Boot up

- 1) Press [POWER] key to boot up the instrument.
- 2) Enter test state after delay, see Figure 3-1, the actual situation may different.

| [                     | $\Box$ Int ( | Local 🗘 |
|-----------------------|--------------|---------|
| <meas disp=""></meas> | PARA A       | С       |
|                       | PARA B       | D       |
| C = 0 + 10.471 = E    | FREQ         | 1kHz    |
| CS 0. 1347 IpF        | LEVEL        | 1.0V    |
|                       | SPEED        | MED     |
| D 0. 52635            | RANGE        | AUTO    |
|                       | RESIST       | 100     |
|                       | MODE         | SER     |
|                       | CLEAR        | OFF     |
|                       | TRIGGER      | INT     |
|                       |              |         |
|                       |              |         |



### 3.2 Measurement Parameter Setting

Use [direction key] or [rotary knob] to move the cursor to the parameter to be test, press [rotary knob] or [ENTER] to enter parameter setting, use [direction key] or [rotary knob] to select the corresponding parameter, and then press [rotary knob] or [ENTER] to confirm the setting.

In addition, press [PARA A] can quickly cursor location to parameter A, press [PARA B] can quickly cursor location to parameter B.

#### 3.2.1 Parameter A/B

| Classification         | Function | Description       |
|------------------------|----------|-------------------|
|                        | L        | Inductance value  |
| Parameter A            | С        | Capacitance       |
| (primary<br>parameter) | R        | Resistance value  |
|                        | Z        | Impedance value   |
|                        | G        | Conductance value |
|                        | Υ        | Admittance value  |
|                        | D        | Loss factor       |
|                        | Q        | Quality factor    |



|             | Θ (deg) | Phase angle       |
|-------------|---------|-------------------|
| Parameter B | Θ (rad) | Phase angle(arc)  |
| (secondary  | В       | Susceptance value |
| parameter)  | Х       | Reactance value   |
|             | R       | Resistance value  |

The UTR2810E/2811E can simultaneously measure two different parameter combinations of the measured impedance in one test cycle. The primary and secondary parameters are as follows:

Z is positive value, L/C/R has positive and negative value.

When C measuring, the primary parameter display "-", the actual device under test is inductive;

When L measuring, the primary parameter display "-", the actual device under test is capacitive;

When R measuring, if R appears R "-", it because over clear, please do clear operating correctly.

UTR2810E/2811E provides 42 measurement parameter combinations: primary and secondary parameter

| Parameter A/B combination | Description                                                              |
|---------------------------|--------------------------------------------------------------------------|
| L-Q                       | Simultaneous measure and display inductance value and quality factor     |
| C-D                       | Simultaneous measure and display capacitance and loss factor             |
| R-X                       | Simultaneous measure and display resistance and reactance value          |
| Z-B                       | Simultaneous measure and display imoedance and susceptance value         |
| Y-Θ (deg)                 | Simultaneous measure and display admittance value and phase angle        |
| G-Ө (deg)                 | Simultaneous measure and display conductance value and phase angle (arc) |
| Y-R                       | Simultaneous measure and display conductance and resistance value        |

#### 3.2.2 Frequency

UTR2810E/2811E provides 4 common test frequency: 100 Hz, 120 Hz, 1 kHz 和 10 kHz.

| Frequency | Description              |
|-----------|--------------------------|
| 100 Hz    | test frequency is 100Hz  |
| 120 Hz    | test frequency is 120Hz  |
| 1 kHz     | test frequency is 1 kHz  |
| 10 kHz    | test frequency is 10 kHz |

#### 3.2.3 Electrical Level

UTR2810E/2811E provides 3 commin test signal voltage: 0.1V, 0.3V and 1.0V. The current test signal voltage will display in the the signal voltage indication area below the LCD.

| Electrical<br>Level | Description                 |
|---------------------|-----------------------------|
| 0.1V                | Test signal voltage is 0.1V |
| 0.3V                | Test signal voltage is 0.3V |
| 1.0V                | Test signal voltage is 1.0V |

#### 3.2.4 Speed

UTR2810E/2811E provides three test mode FAST, MED and SLOW. In general, the slower the test speed, the more stable and accurate the test results.

FAST: 43ms MED: 185ms SLOW: 350ms

| Speed | Description                 |
|-------|-----------------------------|
| FAST  | About 23.3 times per second |
| MED   | About 5.4 times per second  |
| SLOW  | About 2.8 times per second  |

#### 3.2.5 Range

UTR2810E/2811E provides 12 range  $3\Omega$ ,  $10\Omega$ ,  $30\Omega$ ,  $100\Omega$ ,  $300\Omega$ ,  $1k\Omega$ ,  $3 k\Omega$ ,  $10k\Omega$ , 30k,  $100k\Omega$ ,  $300k\Omega$  and Auto. The effective measuring range of each range is shown below.

| No. | Range  | Effective measurement range |  |
|-----|--------|-----------------------------|--|
| 0   | 300 kΩ | 300kΩ-99.9999MΩ             |  |
| 1   | 100 kΩ | 100kΩ-300kΩ                 |  |
| 2   | 30 kΩ  | 30kΩ-100kΩ                  |  |
| 3   | 10 kΩ  | 10kΩ-30kΩ                   |  |
| 4   | 3kΩ    | 3kΩ-10kΩ                    |  |
| 5   | 1kΩ    | 1kΩ-3kΩ                     |  |
| 6   | 300Ω   | 300Ω-1kΩ                    |  |
| 7   | 100Ω   | 100Ω-300Ω                   |  |
| 8   | 30Ω    | 30Ω-100Ω                    |  |
| 9   | 10Ω    | 10Ω-30Ω                     |  |
| 10  | 3Ω     | 10uΩ-10Ω                    |  |
| 11  | Auto   | 10uΩ-99.9999MΩ              |  |

- If the range is auto, the instrument will make range prediction at each measurement period, so the test speed will be slower than the locking range. Change the range frequently will reduce response. In general, automatic range is not suitable for sorting measurement. The nominal rang is for sorting measurement.
- 2. The overload mark "----" will be displayed when the size of the test element exceeds the test range or exceeds the display range of the instrument when the range is maintained.

#### 3.2.6 Internal Resistance

UTR2810E/2811E provides  $30\Omega$  and  $100\Omega$  signal source internal resistance. In the same test voltage, select different signal source internal resistance will get different test current. The test results will be different if the measured part is sensitive to the test current. The instrument provides two kinds of different signal source internal resistance, which can be convenient for users to compare the test results with other instrument manufacturers at home and abroad.

| Internal Resistance | Description                                                  |
|---------------------|--------------------------------------------------------------|
| 30Ω                 | The current signal source internal resistance is $30\Omega$  |
| 100Ω                | The current signal source internal resistance is $100\Omega$ |

#### 3.2.7 Mode

UTR2810E/2811E can SER or PAR two equivalent circuit to measuring L, C, or R.

(1) The choice of capacitance equivalent circuit

Small capacity corresponds to high impedance value, and the influence of parallel resistance is greater than series resistance. At this point the series resistance compared to the impedance of the capacitor is very small, it can be negligible. Therefore, the parallel equivalent method should be selected for measurement.

On the contrary, large capacity corresponds to low impedance value, and the parallel resistance compared to impedance of the capacitor is very large, it can be negligible. The influence of series resistance is greater than parallel resistance. Therefore, the series equivalent method should be selected for measurement.

Generally speaking, capacitive equivalent circuits can select by the rule When the choice is greater than  $10k\Omega$ , select parallel mode When the choice is less than  $10k\Omega$ , select series mode



Between the above impedance, use an appropriate equivalent circuit as recommended by the component manufacturer.

(2) The choice of inductance equivalent circuit

Large inductance corresponds to high impedance value, and the influence of parallel resistance is greater than series resistance. Therefore, the parallel equivalent method is more suitable for measurement. On the contrary, small inductance corresponds to low impedance value, the influence of the series resistance to inductance is more important. Therefore, the series equivalent method is more suitable for measurement.

Generally speaking, inductance equivalent circuits can select by the rule

When the choice is greater than  $10k\Omega$ , select parallel mode

When the choice is less than  $10k\Omega$ , select series mode

Between the above impedance, use an appropriate equivalent circuit as recommended by the component manufacturer.

| Mode | Description                |
|------|----------------------------|
| SER  | Series equivalent circuit  |
| PAR  | Parllel equivalent circuit |

#### 3.2.8 Clear

UTR2810E/2811E open-circuit clearing function can eliminate the influence of stray capacitance and stray admittance (G,B) in parallel with the measured component; The short circuit clearing function eliminates the influence of residual impedance, such as lead resistance or lead inductance in series with the measured component.

| Function Key | Function |
|--------------|----------|
| OFF          | Turn off |
| ON           | Turn on  |

Set [Clear] to ON, the test result is the data after zero clearing; Set it to off, the test result is the data before zero clearing.

#### Method of Zero Clearing Open circuit zero clearing

Open-circuit zero clearing Step 1 Press I CLE

- Step 1 Press [CLEAR] key to enter zero clearing interface;
- Step 2 LCD displays information "keep fixture open";



**Step 3** Press [ENTER] key to execute open-circuit zero clearing. LCD displays information "open-circuit clear is processing'; the instrument will automatically scans open - circuit zero clearing test for each range;

|                           | Int              | Local 🗘    |
|---------------------------|------------------|------------|
| <meas disp=""></meas>     | PARA A<br>PARA B | C<br>D     |
| (<br>  OPEN-CIRCUIT CLEAR | IS PROCE         | SSING      |
|                           | CLEAR<br>TRIGGER | OFF<br>INT |

**Step 4** After that, LCD displays information "press ESC exit; press CLEAR continue"; press [CLEAR] to continuing to zero clearing; This step is completed, which means open-circuit zero clearing is



completed. It can be escape or continue the short-circuit zero clearing test.

|                                                                                    |                                | <u></u>          | Local J U  |
|------------------------------------------------------------------------------------|--------------------------------|------------------|------------|
| <meas< td=""><td>5 DISP&gt;</td><td>PARA A<br/>PARA B</td><td>C<br/>D</td></meas<> | 5 DISP>                        | PARA A<br>PARA B | C<br>D     |
| Cs                                                                                 |                                |                  | v          |
| D                                                                                  | PRESS 'ESC' E<br>PRESS 'CLEAR' | XIT<br>CONTINU   | æ D        |
|                                                                                    |                                | CLEAR<br>TRIGGER | OFF<br>INT |

Step 5 LCD displays information "keep fixture short"; If the instrument need to do short circuit zero clearing, connect the short-circuit plate to the test fixture, or connect the test wire black clip and red clip together;

|                       |                                                  | Int ]                     | Local      | Ĵ |
|-----------------------|--------------------------------------------------|---------------------------|------------|---|
| <meas disp=""></meas> |                                                  | PARA A<br>PARA B          | C<br>D     |   |
| Cs<br>D               | SHORT CIRCUIT<br>KEEP FIXTURE S<br>PRESS 'ENTER' | CLEAR<br>HORT<br>TO CONTI | V<br>NUE   |   |
|                       |                                                  | CLEAR<br>TRIGGER          | OFF<br>INT |   |

**Step 6** Press [ENTER] key to start the short circuit zero clearing. LCD displays information "short-circuit clear is processing"; the instrument will automatically scan short circuit zero clearing test for each range;

|                          | (Int)            | Local )    |
|--------------------------|------------------|------------|
| <meas disp=""></meas>    | PARA A<br>PARA B | C<br>D     |
| (<br>SHORT-CIRCUIT CLEAR | IS PROC          | ESSING     |
|                          | CLEAR<br>TRIGGER | OFF<br>INT |

**Step 7** After that, LCD displays" press ESC EXIT; press CLEAR continue". This step is completed, which means short circuit zero clearing is completed. It can be escape or continue the open-circuit zero clearing test again.



- 1) After the instrument the zero clearing is done, the test condition is changed (replace test fixture, test clip, temperature and humidity environment), the instrument should do zero clearing again.
- 2) During zero clearing, press [ESC] key to escape the current test and return the test state, the original zero clearing data remains unchanged.
- During short zero clearing, it may occasionally occur "FAIL", in this case, the low resistance short circuit (the test wire clip or the short-circuit plate) may not be used or the contact is not



reliable. It should connect to short circuit and then perform the zero clearing again.

- 4) Zero clearing data will store in nonvolatile memory. Under the same test conditions, the instrument does not need to zero clear.
- 5) The instrument will automatically select open-circuit or short circuit zero clearing. "QUIT" will be displayed in the display area if there are components on the test terminal or the instrument is in faulty.

#### 3.2.9 Trigger Setup

UTR2810E/2811E have four trigger modes: INT、 MAN、 EXT and BUS.

| Trigger<br>Mode | Description                                                                                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INT             | Internal trigger mode is also called continuous test. Trigger signal will continuous test by the instrument accordance with the inherent period.                                                                                                |
| MAN             | Manula trigger mode, each time 【TRIGGER】 key is pressed, the instrument will perform a test period and it will be in a waiting state at othe times.                                                                                             |
| EXT             | External trigger mode, when the instrument received a rising edge pulse from Handler interface on the back panel, the instrument will perform a test period and it will be in a waiting state at othe times. Please refer to Handler interface. |
| BUS             | Bus trigger mode, when the instrument received RS232 trigger command, the instrument will perform a test period and it will be in a waiting state at other times. Press ESC to exit.                                                            |

### 3.3 System Setup

Press [UTIL] key to enter system setup interface, setting method is the similar to measurement parameter setting.

|                              | Int Local 🗘 |
|------------------------------|-------------|
| <system setting=""></system> |             |
| COMMUNICATION MODE           | RS232       |
| BAUD RATE                    | 115.2k      |
| PASS SOUND                   | ON          |
| FAIL SOUND                   | ON          |
| KEY SOUND                    | ON          |
| LANGUAGE                     | ENGLISH     |
| DEFAULT SETTING              | ENTER       |
| AUTO LCR                     | OFF         |
| SAVE SET                     | OFF         |
| SYS INFO                     | ENTER       |
|                              |             |

Figure 3-2 System Setting

#### 3.3.1 Communication Mode

UTR2810E provides RS232 communication interface to communicate with PC, all panel key function can be used and inquire the test state and sampling test result of the instrument through this interface. (UTR2811E can't support this setting because it does not contain RS232 interface.)

#### 3.3.2 Baud Rate

Baud rate is the data transmission rate on the RS232 communication bus. UTR2810E supports five common baud rates: 9600bps, 38400bps, 57600bps, 115200bps. (UTR2811E can't support this setting because it does not contain RS232 interface.)



| Baud Rate | Description                          |
|-----------|--------------------------------------|
| 1200      | Tramsmit data 1200 bits per second   |
| 9600      | Tramsmit data 9600 bits per second   |
| 38400     | Tramsmit data 38400 bits per second  |
| 57600     | Tramsmit data 57600 bits per second  |
| 115200    | Tramsmit data 115200 bits per second |

#### 3.3.3 Qualified Beeper

UTR2810E/2811E can set the qualified beeper.

| Qualified Beeper | Description |
|------------------|-------------|
| ON               | Turn on     |
| OFF              | Turn off    |

#### 3.3.4 Unqualified Beeper

UTR2810E/2811E can set the unqualified beeper.

| Unqualified Beeper | Description |
|--------------------|-------------|
| ON                 | Turn on     |
| OFF                | Turn off    |

#### 3.3.5 Key Sound

UTR2810E/2811E can set the key sound.

| Key Sound | Description |
|-----------|-------------|
| ON        | Turn on     |
| OFF       | Turn off    |

#### 3.3.6 LANGUAGE

UTR2810E/2811E can set the language.

| LANGUAGE Description |                           |
|----------------------|---------------------------|
| Chinese              | Display Chinese interface |
| ENGLISH              | Display English interface |

#### 3.3.7 Default Setting

The default setting of UTR2810E/2811E, this setting can return to the factory setting (only for system setting).

#### 3.3.8 Auto LCR

Auto LCR setup of UTR2810E/2811E is an automatic component identification function. According to the property of components to auto select inductance, capacity or resistance parameters to display.

The inductance parameter is automatically set to L-Q;

The capacitor parameter is automatically set to C-D;

The resistance parameter is automatically set to R-X.

| Auto LCR | Description |
|----------|-------------|
| ON       | Turn on     |
| OFF      | Turn off    |

#### 3.3.9 Save Setting

Save setting of UTR2810E/2811E, after this function is turned on, the measurement setting parameters will be automatically called next boot; System configuration parameter; Data and setup of sorting setting.

| Save Setting | Description        |
|--------------|--------------------|
| ON           | Turn on auto save  |
| OFF          | Turn off auto save |

#### 3.3.10 View System Information

After view the system information, press [ENTER] or [ESC] to exit the system information interface.

### 3.4 Sorting Setup

Deviation mode is used to control the display way of the result, deviation display is to show the difference between measured value and reference value. It is used for observing test result with different test conditions or environmental conditions. And it can also be used to observing the test result when sorting the measurement (set the deviation display mode and deviation reference to consistent with the deviation tolerances mode and the nominal value).

Press [Shift] and then press [UTIL] to enter sorting setting, the setting method is the same with measurement parameter setting.

|                              | Int Local 🗘 |
|------------------------------|-------------|
| <system setting=""></system> |             |
| COMMUNICATION MODE           | RS232       |
| BAUD RATE                    | 115. 2k     |
| PASS SOUND                   | ON          |
| FAIL SOUND                   | ON          |
| KEY SOUND                    | ON          |
| LANGUAGE                     | ENGLISH     |
| DEFAULT SETTING              | ENTER       |
| AUTO LCR                     | OFF         |
| SAVE SET                     | OFF         |
| SYS INFO                     | ENTER       |

#### Figure 3-3 Sorting Interface

| [(                               | Int                                                                           | Local 🗘                                                      |
|----------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|
| <meas disp=""></meas>            | PARA A<br>Para b                                                              | R<br>D                                                       |
| R 19.9779 Ω<br>Q 0.00259<br>BIN2 | FREQ<br>FREQ<br>LEVEL<br>SPEED<br>RANGE<br>RESIST<br>MODE<br>CLEAR<br>TRIGGER | a<br>1kHz<br>1.0V<br>MED<br>AUTO<br>100<br>SER<br>OFF<br>INT |

Figure 3-4 Sorting Result

#### 3.4.1 Parameter A/B Setup

Set parameter A/B of UTR2810E/2811E in the main interface, it will keep the settings.

#### 3.4.2 Nominal Value Setup

The nominal value of primary parameter of UTR2810E/2811E can separate set and save.

#### 3.4.3 Comparison Function

The inner comparison of UTR2810E/2811E are allowed to set 3 sets of the limit of primary parameter and 1 set of the limit of secondary parameter. The measured element can be divided into 5 levels (NG, BIN1, BIN2, BIN3 and AUX). When the primary parameter use the comparison function, it should turn on 【Comparsion】 switch, this function is only charge for the sorting judgement of primary parameter; When the secondary parameter use comparison function, it should turn on

[Auxiliary] switch, this function is only charge for the sorting judgement of secondary parameter.



| Comparison/Auxiliary | Function                     |
|----------------------|------------------------------|
| ON                   | Turn on comparsion function  |
| OFF                  | Turn off comparsion function |

#### 3.4.4 Comparison Mode

UTR2810E/2811E provides 3 comparison modes: SEQ, ABS and % (percentage deviation), the latter two are collectively referred to as tolerance mode (TOL).

TOL: set the deviation of the nomial value to be the limit of comparsion;

SEQ: set the test range as the limit of comparsion, the limit of comparsion must order from small to large.



ABS display mode ABS = X – Y

X is the test value of the current measured part

Y is the setting nomial value

% (Percentage Deviation)

 $\% = (X - Y) / Y \times 100[\%]$ 

X is the test value of the current measured part Y is the setting nomial value

| Comparison Mode | Description               |
|-----------------|---------------------------|
| SEQ             | Sequency mode             |
| ABS             | Absoulate deviation mode  |
| %               | Percentage deviation mode |

### 3.4.5 [Upper Limit], [Lower Limit] Parameter Setting

UTR2810E/2811E can set 3 sets of the upper/lower limit of primary parameter, 1 set of the limit value of secondary parameter. The upper limit of each level should greater than the lower limit, otherwise, UTR2810E/2811E will not select any components into the grade.

<sup>1)</sup> The primary parameter A set nominal value, comparsion mode to compare; Secondary parameter B in the auxiliary mode, compare between the lower limit and the upper limit. There are two independent comparator, it should turn on the switch respectively. The switch turned on at the same time, and qualified at the same time, report BIN1/BIN2/BIN3; If one fails, report NG.

### UNI-T.

## 4. Instruction of Handler Interface

In this chapter you will learn the following:

- Brief Introduction
- Operating Instruction

### **4.1 Brief Introduction**

UTR2810E provides Handler interface, this interface is used for outputs sorting result of the instrument.

When the instrument is used in the automatic component sorting test system, the interface provides the contact signal with the system and the sorting result output signal. As shown in Table 4-1, contact signal include /TRIG(start signal), /IDX(AD end of transition), /EOM( end of all measurement); Sorting result include qualified grade /BIN1, /BIN2, /BIN3, auxiliary grade/AUX, and unqualified grade/NG.

Using these signal, the instrument can be easily integrated with the system controller into an automatic test system for component testing, sorting and quality control, therefore improving the production efficiency.

| Name  | Signal                 | Circuit Characteristic                                                      |
|-------|------------------------|-----------------------------------------------------------------------------|
| /BIN1 |                        | Inner pull-up resistor                                                      |
| /BIN2 | Qualified signal       | Low level valid                                                             |
| /BIN3 |                        | Photocoupling                                                               |
| /NG   | Unqualified signal     |                                                                             |
| /AUX  | Auxiliary signal       |                                                                             |
| /EOM  | End of all measurement |                                                                             |
| /TRIG | Start signal           | Pulse width≥1µs, rising edge trigger, low level drive current about 5-10mA. |

Table 4-1 Handler Interface

### 4.2 Operating Instruction

#### 4.2.1 Definition of signal line

HANDLER interface has three modes: Comparison output, control input and output.

Comparison output signal:

/BIN1, /BIN2, /BIN3, /NG, /AUX. Comparsion output signal generation see Figure 4-1.

Control output signal:

/EOM (end of measurement and comparison of valid data signals)

Control inutput signal:

/TRIG (external trigger mode)

Note: "/"before signal name is presents that the signal is valid in low level.

Figure of Comparison and Auxiliary Function







### 4.2.2 Connection terminal and Signa



Figure 4-4 Handler Interface

See Table 4-2 and Figure 4-4 for pin assignment and brief introduction, sequency chart see Figure 4-5.

| Pin    | Signal | Description                                                        |
|--------|--------|--------------------------------------------------------------------|
| Number | Name   |                                                                    |
| 1      | /BIN1  | Output sorting judgement results.                                  |
| 2      | /BIN2  | All signals are collector outputs with built-in pull-up resistors. |
| 3      | /BIN3  | Pull-up power can select internal and external power EXTV.         |
| 4      | /NG    | Built-in pull-up resistance is 4.7kΩ.                              |
| 5      | /AUX   |                                                                    |
| 6      | /TRIG  | Falling edge will trigger the instrument measurement.              |
| 7      | EXTV   | External DC power for the sorting interface signal.                |
| 8      | /EOM   | End Of Measurement:                                                |
|        |        | The signal is valid when the measurement data and comparison       |
|        |        | results are valid                                                  |
| 9      | COM    | Reference ground of external power EXTV                            |

Table 4-2 Pin Definition of Handler Interface

UNI-T.



Figure 4-5 Sequence Chart of Handler Interface

#### 4.2.3 Electrical Characteristic

Each DC output (pin 1-6) is isolated by open collector photocouplers. Output voltage of each line is decided by pullup voltage of Handler interface. The pull-up voltage is provided by the external voltage (EXTV: +5V to +24V).

| Output Signal                       | Output the rated voltage |            | The<br>maximum | Reference ground of circuit                                                                         |
|-------------------------------------|--------------------------|------------|----------------|-----------------------------------------------------------------------------------------------------|
|                                     | Low level                | High level | current        |                                                                                                     |
| /BIN1- /BIN3<br>/AUX<br>/NG<br>/EOM | ≤0.5V                    | +5V~ +24V  | 6mA            | Built-in pull-up voltage: the<br>instrument reference ground of<br>external voltage (EXTV) :<br>COM |

Elecrical characteristic of DC isolated output see Table 4-3.

Table 4-3 Elecrical Characteristic of DC Isolated Output





#### Sorting Signal Simplified Diagram see Figure 4-6

Figure 4-6 Sorting Signal Simplified Diagram

■ Use external power supply (factory default) : 2 of J200 connected with 3 of J200; 2 of J100 connected with 3 of J100.

UTR2810E has sorting function, UTR2811E has not sorting function.



## 5. RS232 Serial Interface

In this chapter you will learn the following:

- Introduction of RS-232 interface
- UTR2810E serial interface
- Connect to computer
- Serial port parameter
- Key points of programming

The instrument uses an RS-232 interface (standard) to communicate with the computer for all instrument functions. Through standard SCPI commands, user can also easily compile a variety of acquisition systems suitable for their own.

### 5.1 Introduction of RS-232C Interface

RS-232 is the widely used serial communication standard, it's also called asynchronous serial communication standard. RS-232 is used to realize data communication between computers and peripherals. RS is an abbreviation for "Recommended Standard", 232 is the standard number, this is a standard officially published by EIA in 1969, which stipulates that one data line is transmitted one at a time.

The configuration of most serial ports is usually not strictly based on the RS-232 standard: 25 core connector are used on each port (the current computer is basically use 9 core connector). The common RS-232 signal table see Table 5-1.

| Signal                 | Symbol | Pin number of 25 core | Pin number of 9 core |
|------------------------|--------|-----------------------|----------------------|
|                        |        | connector             | connector            |
| Request to Send        | RTS    | 4                     | 7                    |
| Clear to Send          | CTS    | 5                     | 8                    |
| Data Set Ready         | DSR    | 6                     | 6                    |
| Data Carrier Detection | DCD    | 8                     | 1                    |
| Data Terminal Ready    | DTR    | 20                    | 4                    |
| Transmitted Data       | TXD    | 2                     | 3                    |
| Received Data          | RXD    | 3                     | 2                    |
| GND                    | GND    | 7                     | 5                    |

Table 5-1 RS-232 Common Signal

### 5.2 UTR2810E Serial Interface

Serial ports of UTR2810E is not strictly based on the RS-232 standard, it's just provide a smallest simplified subset, see Table 5-2.

| Signal           | Symbol | Pin number of 9 core connector |
|------------------|--------|--------------------------------|
| Transmitted Data | TXD    | 3                              |
| Received Data    | RXD    | 2                              |
| GND              | GND    | 5                              |

Table 5-2 UTR2810E Serial Signal

RS232C connector uses 9 core pin DB socket, sequence of pin see Figure 5-1



Figure 5-1 Back View of RS232C Connector



- Suggestion:
- 1. To avoid electrical shock, turn off the power supply when removing or inserting the connector.
- 2. To avoid damge the device, do not short circuit output terminal or the chassis.

### 5.3 Connect to Computer

Refer to Figure 5-2, the pin definition of the UTR2810E is different from the pin definition of the 9 core connector used by computer. User can use dual-core shielded wire to made three-wire connecting cable (length should less than 1.5m) as shown in the picture or buy the serial port cable of UTR2810E from Uni-trend company. When self-made cable connecting to the computer, pay attention to the right connecting, the computer side should short circuit with 4, 6 pin, 7, 8 pin.



Figure 5-2 Instrument connect with Computer

### 5.4 Serial Port Parameter

Serial port parameter of UTR2810E see Table 5-3:

| TransmissionMode | Full duplex asynchronous communication | with start and stop bit |
|------------------|----------------------------------------|-------------------------|
| Baud Rate        | 9600 bps                               |                         |
| Data Bit         | 8 bit                                  |                         |
| Stop Bit         | 1 bit                                  |                         |
| Parity Bit       | None                                   |                         |
| End Character    | NL (line character, ASCII code 10)     |                         |
| Connector        | DB9 core                               |                         |

Table 5-3 Serial Port Parameter

### 5.5 Key Points of Programming

Because UTR2810E does not use hardware communication, and RS232C serial communication is simple to use. Therefore reduce the possible data loss or data error phenomenn, communication software should be compiled strictly comply with the following requirements:

- 1) The host computer transmit command by ASCII code with NL (newline character, ASCII code is 10) as the end character. UTR2810E will perform the command when received the end character.
- 2) Once UTR2810E perform inquiry command, the query result will be sent immediately, regardless of whether the current command string has been executed completely. Therefore, a command string can inquire multiple times, but the host computer should have a corresponding number of read result operation. This protocol is recommends that a command string only contain one query.



- 3) Query result send by ASCII code string with NL(newline character, ASCII code is 10) as the end character.
- 4) UTR2810E sends the query result continuously (interval of 1ms), the host computer should remain the ready state, otherwise, data may be lost.
- 5) For some bus command which need a longer time to complete, such as zero clearing. The host computer should be voluntary waiting or synchronize the execution of the previous command by response to the user's keyboard input confirmation. To avoid the next command being ignored or error when command execution.
- 6) The communication software programed by DOS application software should running in the pure DOS environment which provides serial port, not in the WINDOWS environment.

Notices: If the host computer cannot receive the return data of the instrument, user can use

the following methods to figure out:

- 1. If the software handshake is disabled, please refer to <system setup> to enable it.
- 2. If the serial port shows connection error, please check the cable connecting condition.
- 3. If the communication format of advanced language program occurs error, please check whether the format ir right and baud rate is the same as the instrument.
- 4. If the the instrument is parsing the last command and the host computer cannot receive the response, try again later.
  - <If the problem still cannot resolved, please consult with UNI-T after-sale engineer.>

#### 5.6 End Character

The instrument provides three end characters:

LF (hexadecimal: 0x0A)

CR(hexadecimal: 0x0D)

CR+LF (hexadecimal: 0x0D 0x0A)

End character can select in the system configuration page, the factory default is CR+LF.

#### 5.7 SCPI Language

SCPI-Standard Commands for Programmable Instruments is the common command set to test instrument adopt by UNI-T instrument. SCPI also known as TMSL-Test and Measurement System Language, which develop based on IEEE488.2 by Agilent Technologies. It has been widely used by manufacturers of test equipment.

The built-in command parser is responsible for analysis the user's command format. The command parser complies with the SCPI protocol but is not completely the same, so please read "UTR2810E SCPI command reference" carefully before start.

UTR2810E has RS232 interface, UTR2811E has no RS232 interface.

### JNI-T

## 6. General Characteristic Index

In this chapter you will learn the following:

- **Measurement Parameter**
- Equivalent Circuit
- Range
- Trigger Mode •
- **Test Terminal Mode**
- Test Speed
- Basic Accuracy
- Test Signal Frequency
- Test Signal Level
- Output Impendance •
- Test Display Range
- Clear
- **Comparsion Mode**
- Hold Range
- Beeper
- RS232 Port HANDLER Port

- 1. Primary Parameter:
- L: Inductance

6.1 Measurment Parameter

- C: Capacitance
- R: Resistance
- Z: Impedance
- G: Conductance
- Admittance Y:

#### 2. Secondary Parameter:

- D: Loss
- Quality factor Q:
- X: Reactance
- $\Theta$  (deg) : Phase angle
- $\Theta$  (rad) : Phase angle (radian)
- **B:** Electrical susceptance
- R: Resistance
- 3. Measurment parameter combination (there are 42 kinds of arbitrary combination of primary and secondary parameters, which are not listed here)
- L-Q
- C-D
- R-Q
- Z-Q

### 6.2 Equivalent Mode

- SER:series
- PAR:parallel

The inductance, capacitance, resistance is not ideal pure reactance or resistance component, so they need to form in series or parallel to be a complex impedance component. The instrument will calculate its required value according to the series or parallel equivalent circuit, different equivalent circuit will get different results.



The two of equivalent circuit can transfer by the formula showed as Table 6-1. Regardless of the equivalent, it is the same for Q and D.



Table 6-1 Equivalent Circuit Conversion

#### Notices:

- 1. The definition of Q、D、Xs: Q=Xs/Rs, D=Rs/Xs, Xs=1/2 $\pi FCs$ =2 $\pi FLs$
- 2. In component parameters, the subscript S represents series equivalent and p represents parallel equivalent

### 6.3 Range

When UTR2810E/2811E in  $30\Omega/100\Omega$  source internal resistance, there are 11 range  $3\Omega$ ,  $10\Omega$ ,  $30\Omega$ ,  $100\Omega$ ,  $300\Omega$ ,  $1k\Omega$ ,  $3k\Omega$ ,  $10k\Omega$ ,  $30k\Omega$ ,  $100k\Omega$  and  $300k\Omega$ .

### 6.4 Trigger Mode

UTR2810E provides internal, external, bus and manual trigger mode.

| Trigger Mode | Function                                                                    |
|--------------|-----------------------------------------------------------------------------|
| Internal     | The trigger signal is automatically generated within the instrument so that |
|              | measurement can be continuously.                                            |
| External     | When Handler port received the "start" signal from the external             |
|              | , it will generate a measurement.                                           |
| Bus          | When RS232 port received the bus trigger command will generate a            |
|              | measurement.                                                                |
| Maunal       | Press TRIGGER key to start a test.                                          |

Table 6-2 Trigger Mode

### 6.5 Test Terminal Mode

Four-terminal test:

- Hcur: current excitation high end;
- Hpot: voltage sampling high end;
- Lpot: voltage sampling low end;
- Lcur: current excitation low end.

### 6.6 Test Speed

Test frequency, integral time, component size, display mode, rang mode and comparsion all these will affect test spee.

UTR2810E/2811E provides thress test modes FAST, MED and SLOW . In general, the slower the test speed, the more stable and accurate the test results .

| Speed | Time (S) |
|-------|----------|
| FAST  | 23.3     |
| MED   | 5.4      |
| SLOW  | 2.8      |

Table 6-3 Test Speed

### 6.7 Basic Accuracy

| Туре | Accuracy                                               |
|------|--------------------------------------------------------|
| С    | 0.1% (1+ Cx/Cmax+ Cmin/Cx )(1+Dx )( 1+ks+kv+kf )ke     |
| L    | 0.1% (1+ Lx/Lmax+ Lmin/Lx )(1+1/Qx )( 1+ks+kv+kf )ke   |
| Z    | 0.1% (1+ Zx/Zmax+ Zmin/Zx )(1+ks+kv+kf )ke             |
| R    | 0.1%(1+ Rx/Rmax+ Rmin/Rx )(1+Qx)(1+ks+kv+kf )ke        |
| D    | 0.0010(1+ Zx/Zmax+ Zmin/Zx )(1+Dx+Dx2 )(1+ks+kv+kf )ke |
| Q    | 0.0015(1+ Zx/Zmax+ Zmin/Zx )(Qx+1/Qx )(1+ks+kv+kf )ke  |

Table 6-4 Basic Accuracy

Notices:

- 1, D, Q is absoult error, other is relative erro Dx=1/Qx;
- 2. The subscript x is the measured value of this parameter, the subscript max is the

maximum value and min is the minimum value;

- 3、 ks is speed factor, kv is voltage factor, kf if frequency factor, ke is temperature factor(see Table 6-7);
- 4. In order to ensure the measurement accuracy, accuracy calibration should under the current measurement condition, test tool to perform the stable open-circuit zero clearing;
- 5、Guarantee of accuracy: 1 year



#### 6.7.1 Maximum and Minimum Value of Measurement Parameter Affecting Accuracy

| Parameter  | Frequency |        |        |         |
|------------|-----------|--------|--------|---------|
|            | 100Hz     | 120Hz  | 1kHz   | 10kHz   |
| Cmax       | 800µF     | 667µF  | 80µF   | 8µF     |
| Cmin       | 1500pF    | 1250pF | 150pF  | 15pF    |
| Lmax       | 1590H     | 1325H  | 159H   | 15.9H   |
| Lmin       | 3.2mH     | 2.6mH  | 0.32mH | 0.032mH |
| Zmax/ max  | 1MΩ       |        |        |         |
| Zmin/ Rmin | 1.59Ω     |        |        |         |

Table 6-5 Maximum and Minimum Value of Measurement Parameter Affecting Accuracy

#### 6.7.2 Affecting Speed Error Factor ks

Slow, medium speed: ks=0

Fast speed: ks=10

#### 6.7.3 Test Level Error Factor kv

Test level, test level V (effective value) set by the instrument, the unit is mV.

| Test Level | Error factor kv |
|------------|-----------------|
| 1V         | 0               |
| 0.3V       | 1               |
| 0.1V       | 4               |

Table6-6 Test Level Error Factor kv

#### 6.7.4 Test Frequency Error Factor kf

- f = 100Hz, 120Hz ,1kHz; kf=0;
- f = 10kHz; kf=0.5

#### 6.7.5 Test Temperature Error Factor ke

| Temperature | 5 | 8 | 1 | 8 | 28 |   | 38 |   |
|-------------|---|---|---|---|----|---|----|---|
| (°C)        |   |   |   |   |    |   |    |   |
| Ke          | 5 | 4 | 2 | 1 |    | 2 |    | 4 |

Table 6-7 Temperature factor ke

#### 6.8 Test Signal Frequency

UTR2810E/2811E provides four common test frequency: 100 Hz, 120 Hz, 1 kHz and 10 kHz. Frequency accuracy: 0.02%

### 6.9 Test Signal Level

■ 0.1 Vrms±10%



- 0.3 Vrms±10%
- 1.0 Vrms±10%

### 6.10 Output Impedance

- 30Ω±5%
- 100Ω±5%

### 6.11 Test Display Range

| Parameter | Test Range            |  |  |  |
|-----------|-----------------------|--|--|--|
| R, X, Z   | 0.00001Ω ~ 99.9999ΜΩ  |  |  |  |
| G, B,  Y  | 0.01nS ~ 999.999S     |  |  |  |
| L         | 0.00001uH ~ 9999.99H  |  |  |  |
| С         | 0.00001pF ~ 9999.99mF |  |  |  |
| D         | 0.00001 ~ 9.99999;    |  |  |  |
| Q         | 0.00001 ~ 99999.9;    |  |  |  |
| Θ(deg)    | -179.999° ~ 179.999°  |  |  |  |
| Θ(rad)    | -3.14159 ~ 3.14159    |  |  |  |

Table 6-8 Test Display Range

### 6.12 Clear Function

UTR2810E/2811E open-circuit zero clearing function can eliminate the influence of stray admittance (G, B) ,such as stray capacitance in parallel with the measured component; Short circuit zero clearing function eliminates the influence of residual impedance, such as lead resistance or lead inductance in series with the component under test.

### 6.13 Comparison Function

The inner comparison of UTR2810E/2811E are allowed to set 3 sets of the limit of primary parameter and 1 set of the limit of secondary parameter. The measured element can be divided into 5 levels (NG, BIN1, BIN2, BIN3 and AUX). When the primary and secondary parameter of the measured component are judged independently, both are opened at the same time, and the test results are passed, then it will show qualified.

The comparison function is useful when using the Handler port to set UTR2810E for automatic sorting system.

### 6.14 Beeper

- OFF turn off beeper
- ON turn on beeper

### 6.15 Range Hold

AUTO Range: the instrument automatically select the test range

Range Hold: the instrument will remain in one range to perform testing



### 6.16 RS232 Interface

Use simplified RS232 standard, not support hardware contact function Transmite baud rate: 115200, 57600, 38400, 9600

The maximum transmit distance: 15m Communication command is in SCPI format, and all commands and data on the bus are transmitted by ASCII code.

### 6.17 HANDLER Interface

Acceptable trigger signal (/TRIG)

Output comparsion signal (/NG, /BIN1, /BIN2, /BUN3, /AUX)

Output control signal (/EOM) Output Optoelectronic isolation whe logical low level is valid Built-in pull-up resistor use external power supply by default

# UNI-TREND TECHNOLOGY (CHINA) CO., LTD.

No. 6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan City, Guangdong Province, China

